Publications: Covid-19
Neil, M., McLachlan, S. and Fenton, N. (2024) ‘The extent and impact of vaccine status miscategorisation on covid-19 vaccine efficacy studies’. medRxiv, https://doi.org/10.1101/2024.03.09.24304015
McLachlan, S. Daley, B., Kyrimi, E., Dube, K., Saidi, S., Grosan, C., Neil, M., Fenton, N., Rose, L. (2024). Approach and method for Bayesian Network Modelling: The case for pregnancy outcomes in England and Wales. 17th International Conference on Health Informatics (HEALTHINF). Rome, Italy. February 2024. https://doi.org/10.5220/0012428600003657
​
Gerry A Quinn, Michael Connolly, Norman E. Fenton, Steven J. Hatfill, Paul Hynds, Coilín ÓhAiseadha, Karol Sikora, Willie Soon, Ronan Connolly (2024), "Influence of Seasonality and Public-Health Interventions on the COVID-19 Pandemic in Northern Europe", Journal of Clinical Medicine, J. Clin. Med. 2024, 13(2), 334; https://doi.org/10.3390/jcm13020334
McLachlan S, Neil M, Choi Y, Craig S, Dube K, Engler J, Osman M, Fenton N E, (2023) "Extended: Analysis of COVID-19 Vaccine Death Reports from the Vaccine Adverse Events Reporting System (VAERS) Database", http://dx.doi.org/10.13140/RG.2.2.23499.87842
​
Fenton, N. E., Neil, M. (2023). "The Lancet and the Pfizer Vaccine: A Case Study in Academic Censorship and Deceit in the Covid Era", http://dx.doi.org/10.13140/RG.2.2.29792.56321
​Fenton, N. E., Neil, M., Craig, C. & McLachlan, S. (2022). "What the ONS Mortality Covid-19 Surveillance Data can tell us about Vaccine Safety and Efficacy", http://dx.doi.org/10.13140/RG.2.2.30898.07362
​
Fenton, N. E., (2022) The Bangladesh Mask study: a Bayesian perspective, http://dx.doi.org/10.13140/RG.2.2.26189.92649
Craig, C., Neil, M., Fenton, N., McLachlan, S., Smalley, J., Guetzkow, J., Engler, J.,Rusell, D., Rose, J. (2022). Official mortality data for England reveal systematic undercounting of deaths occurring within first two weeks of Covid-19 vaccination. https://doi.org/http://dx.doi.org/10.13140/RG.2.2.12472.42248
Martin Neil, Norman Fenton, Joel Smalley, Clare Craig, Joshua Guetzkow, Scott McLachlan, Jonathan Engler, Dan Russell and Jessica Rose (2021), “Official mortality data for England suggest systematic miscategorisation of vaccine status and uncertain effectiveness of Covid-19 vaccination”, http://dx.doi.org/10.13140/RG.2.2.28055.09124 (this is a significantly revised version of http://dx.doi.org/10.13140/RG.2.2.14176.20483)
​
Martin Neil, Norman Fenton, Joel Smalley, Clare Craig, Joshua Guetzkow, Scott McLachlan, Jonathan Engler and Jessica Rose (2021), “Latest statistics on England mortality data suggest systematic miscategorisation of vaccine status and uncertain effectiveness of Covid-19 vaccination”, http://dx.doi.org/10.13140/RG.2.2.14176.20483
​
Martin Neil, Norman Fenton and Scott McLachlan (2021), "Discrepancies and inconsistencies in UK Government datasets compromise accuracy of mortality rate comparisons between vaccinated and unvaccinated", http://dx.doi.org/10.13140/RG.2.2.32817.10086 [A significantly updated version of the paper is here]
Fenton, N. E., Neil, M., & McLachlan, S. (2021). Paradoxes in the reporting of Covid19 vaccine effectiveness
Why current studies (for or against vaccination) cannot be trusted and what we can do about it,
http://dx.doi.org/10.13140/RG.2.2.32655.30886
Neil, M and Fenton N E (2021), "Bayesian Hypothesis Testing and Hierarchical Modeling of Ivermectin Effectiveness", American Journal of Therapeutics, Vol 28, e577–e579, http://dx.doi.org/10.1097/MJT.0000000000001450
Neil, M and Fenton N E (2021), "Bayesian hypothesis testing and hierarchical modelling of ivermectin effectiveness in treating Covid-19" http://dx.doi.org/10.13140/RG.2.2.19703.75680 Updated version here
Fenton, N. E., Neil, M., & McLachlan, S. (2021). Paradoxes in the reporting of Covid19 vaccine effectiveness: Why current studies (for or against vaccination) cannot be trusted and what we can do about it. http://dx.doi.org/10.13140/RG.2.2.32655.30886
McLachlan, S, Osman, M, Dube, K, Chiketero, P, Choi, Y, and Fenton N (2021) "Analysis of COVID-19 vaccine death reports from the Vaccine Adverse Events Reporting System (VAERS) Database", http://dx.doi.org/10.13140/RG.2.2.26987.26402
​
Fenton, N. E., Neil, M., & McLachlan, S. (2021). What proportion of people with COVID-19 do not get symptoms? https://doi.org/10.13140/RG.2.2.33939.60968
​
Fenton N. E, Neil M, McLachlan S, Osman M (2021), "Misinterpreting statistical anomalies and risk assessment when analysing Covid-19 deaths by ethnicity", Significance, 18(2). https://www.significancemagazine.com/701 Pre-print: 10.13140/RG.2.2.18957.56807 Blog post here.
​
Fenton, N. E., McLachlan, S., Lucas, P., Dube, K., Hitman, G., Osman, M., Kyrimi, E. Neil, M. (2021). "A Bayesian network model for personalised COVID19 risk assessment and contact tracing" https://doi.org/10.1101/2020.07.15.20154286
Fenton, N. E. (2020) How to explain an increasing proportion of people testing positive for COVID if there is neither an increase in proportion of genuine cases nor increase in the false positive rate. https://doi.org/10.13140/RG.2.2.27902.20806
Fenton, N. E., McLachlan, S., Lucas, P., Dube, K., Hitman, G., Osman, M., Kyrimi, E. Neil, M. (2021). "A Bayesian network model for personalised COVID19 risk assessment and contact tracing" https://doi.org/10.1101/2020.07.15.20154286
Fenton, N E., Neil M., & McLachlan, S. (2020). A Response to the Call for Evidence Regarding COVID-19 Data
Transparency and Accountability (UK Parliament, Public Administration and Constitutional Affairs Committee, Commons Select Committee). https://committees.parliament.uk/writtenevidence/13847/default/ Also available here.
​
​Butcher, R., & Fenton, N. E. (2020). Extending the range of symptoms in a Bayesian Network for the Predictive Diagnosis of COVID-19, medRxiv https://doi.org/10.1101/2020.10.22.20217554
​
Prodhan, G., & Fenton, N. E. (2020). Extending the range of COVID-19 risk factors in a Bayesian network model for personalised risk assessment. medRxiv https://doi.org/10.1101/2020.10.20.20215814
Fenton, N E. (2020). A Note on UK Covid19 death rates by religion: which groups are most at risk? http://arxiv.org/abs/2007.07083
Fenton, N. E., McLachlan, S., Lucas, P., Dube, K., Hitman, G., Osman, M., Kyrimi, E., Neil, M. (2020). "A privacy-preserving Bayesian network model for personalised COVID19 risk assessment and contact tracing". MedRxiv, 2020.07.15.20154286. https://doi.org/10.1101/2020.07.15.20154286
Neil, M., Fenton, N E., Osman, M., & McLachlan, S. (2020). "Coronavirus: our study suggests more people have had it than previously estimated", The Conversation, 26 June 2020
Neil, M., Fenton, N.E, Osman, M., & McLachlan, S. (2020). "Bayesian Network Analysis of Covid-19 data reveals higher Infection Prevalence Rates and lower Fatality Rates than widely reported". Journal of Risk Research, 23 (7-8), 866-879 https://doi.org/10.1080/13669877.2020.1778771 . Preprint: MedRxiv, 2020.05.25.20112466. https://doi.org/10.1101/2020.05.25.20112466 Blog post here
Osman, M., Fenton, N. E. , McLachlan, S., Lucas, P., Dube, K., Hitman, G. A., Kyrimi, E, Neil, M, (2020)."The thorny problems of Covid-19 Contact Tracing Apps: The need for a holistic approach", Journal of Behavioral Economics for Policy, Vol. 4, 57-61. Published version. Also available here.
McLachlan, S., Lucas, P., Dube, K., McLachlan, S., Hitman, G. A., Osman, M., Kyrimi, E, Neil, M, Fenton, N. E. (2020). "COVID-19 and contact tracing: literature review and additional analysis", submitted to BMC Public Health
Fenton, N E (2020), "Why most studies into COVID19 risk factors may be producing flawed conclusions-and how to fix the problem", http://arxiv.org/abs/2005.08608 Blog post here
McLachlan, S., Lucas, P., Dube, K., McLachlan, S., Hitman, G. A., Osman, M., Kyrimi, E, Neil, M, Fenton, N. E. (2020). "The fundamental limitations of COVID-19 contact tracing methods and how to resolve them with a Bayesian network approach". https://doi.org/10.13140/RG.2.2.27042.66243
McLachlan, S., Lucas, P., Dube, K., Hitman, G. A., Osman, M., Kyrimi, E., … Fenton, N. E. (2020). Bluetooth Smartphone Apps: Are they the most private and effective solution for COVID-19 contact tracing? http://arxiv.org/abs/2005.06621
Fenton, N. E., Neil, M., Osman, M., & McLachlan, S. (2020). "COVID-19 infection and death rates: the need to incorporate causal explanations for the data and avoid bias in testing". Journal of Risk Research, 1–4. https://doi.org/10.1080/13669877.2020.1756381
Fenton, N. E., Osman, M., Neil, M., & McLachlan, S. (2020). Coronavirus: country comparisons are pointless unless we account for these biases in testing. The Conversation, April 2, 2020 Spanish version: Coronavirus: las comparaciones entre países no tienen sentido a menos que tengamos en cuenta los sesgos en las pruebas.